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Abstracts
Background: The number of studies measuring breakdown products of the glyco-
calyx in plasma has increased rapidly during the past decade. The purpose of the 
present systematic review was to assess the current knowledge concerning the as-
sociation between plasma concentrations of glycocalyx components and structural 
assessment of the endothelium.
Methods: We performed a literature review of Pubmed to determine which glyco-
calyx components change in a wide variety of human diseases and conditions. We 
also searched for evidence of a relationship between plasma concentrations and the 
thickness of the endothelial glycocalyx layer as obtained by imaging methods.
Results: Out of 3,454 publications, we identified 228 that met our inclusion criteria. 
The vast majority demonstrate an increase in plasma glycocalyx products. Sepsis and 
trauma are most frequently studied, and comprise approximately 40 publications. 
They usually report 3-4-foldt increased levels of glycocalyx degradation products, 
most commonly of syndecan-1. Surgery shows a variable picture. Cardiac surgery 
and transplantations are most likely to involve elevations of glycocalyx degrada-
tion products. Structural assessment using imaging methods show thinning of the 
endothelial glycocalyx layer in cardiovascular conditions and during major surgery, 
but thinning does not always correlate with the plasma concentrations of glycocalyx 
products. The few structural assessments performed do not currently support that 
capillary permeability is increased when the plasma levels of glycocalyx fragments in 
plasma are increased.
Conclusions: Shedding of glycocalyx components is a ubiquitous process that occurs 
during both acute and chronic inflammation with no sensitivity or specificity for a 
specific disease or condition.

1  | INTRODUC TION

The glycocalyx is a 0.2-5 µm thick layer of glycosylated proteins that cov-
ers the luminal side of the endothelium throughout the cardiovascular 

system (Figure 1). The layer is believed to have great functional impor-
tance to local vasodilatation, coagulation, and inflammation.1,2

Degradation of the endothelial glycocalyx layer (“shedding”) 
occurs in inflammatory states, during ischemia, and after vigorous 
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volume loading. Such shedding is claimed to quickly change the 
physiology of the endothelium by obstructing local adaptation of 
blood flow and increasing the capillary permeability for macromole-
cules, which promotes hypovolemia.3

Given these properties, there is no wonder that the glycocalyx 
has received considerable attention over the past decade as demon-
strated by the significant increase in publications. The majority of 
studies on glycocalyx shedding have been performed in laboratory 
animals, mostly in rats. Here, shedding of the endothelial glycocalyx 
seems to result primarily from metalloproteinase (MMP) activity, as 
inhibition of MMPs reduces endothelial glycocalyx degradation in 
response to inflammatory stimulation.4-6

Increases in circulating heparan sulfates, hyaluronan, and syndecan-1 
have been reported in rat models of sepsis7,8 and hemorrhagic shock.9-11

In terms of human investigations, the most common clinical study 
design has been to identify situations where the glycocalyx is de-
graded by measuring glycocalyx breakdown products in the plasma of 
patients. This has been done for a wide variety of conditions with the 
hypothesis being that the integrity of the glycocalyx can be related to 
changes in plasma concentrations of glycocalyx shed products.

In the discussion, we review confounding issues related to mea-
suring plasma components assumed to represent cell-surface con-
stituents but that have not been correlated to induce meaningful 
structural implications of clinical relevance.

2  | METHODS

To obtain a comprehensive dataset on all of the publications evaluat-
ing the human endothelial glycocalyx, a search of PubMed using the 
term “glycocalyx” yielded 3454 publications, returned from the earli-
est date in the database record, October 1958 to August 2020. The 
presentation adhered to the PRISMA Statement, whenever applicable.

Figure  2 represents a summary of our methodology. The first 
search was automated using the search terms “glycocalyx,” then all 

abstracts were manually reviewed by one person (VP) to ensure the 
Methods indicated that the study was: (a) human data, (b) recorded 
a glycocalyx component: syndecan-1 (sdc-1), syndecan-4 (sdc-4), 
glypican (Gpc), heparan sulfate (HS), chondroitin sulfate (CS) or hyal-
uronan (HA), and (c) recorded the source (plasma, CSF, urine). Every 
abstract published that included the word “glycocalyx” was reviewed 
in detail. The methods sections were reviewed for the type of study 
that was performed. Review articles and manuscripts without an 
Abstract in English or else did not evaluate the “human” glycocalyx, 
“glycocalyx integrity,” and/or “glycocalyx damage" were excluded.

Structural assessments of the glycocalyx were categorized as 
sidestream dark field (SDF) imaging, orthogonal polarization spectral 
(OPS) imaging, incidental dark field (IDF) imaging, bright-field imag-
ing and erythrocyte sodium sensitivity studies. A brief explanation 
of each method is presented in the Appendix. SDF, OPS, and IDF are 
quite similar methods but with incremental refinement to improve 
image clarity and resolution.

Abstracts that described structural assessment of the glycocalyx 
using fluorescent dextrans to determine void volumes of the glyco-
calyx were not included in this review due to concerns raised about 
this methodology.12

F I G U R E  1   Schematic drawing of the 
molecular ultrastructure of the endothelial 
glycocalyx layer.2 Used, by permisison, 
from Bertram A, Stahl K, Hegermann J, 
Haller H. The glycocalyx layer. In: Hahn 
RG, ed. Clinical Fluid Therapy in the 
Perioperative Setting, 2nd Ed. Cambridge: 
Cambridge University Press [Colour figure 
can be viewed at wileyonlinelibrary.com]

Editorial Comment

Glycocalyx shedding during inflammatory and ischemic 
states, and as a response to volume loading, is an very ac-
tive area of research in recent years in anesthesiology and 
critical care medicine. This systematic review of glycocalyx 
shedding provides a detailed update on the current state of 
knowledge on quantification of glycocalyx shedding as as-
sessed by measurements from plasma and in vivo structural 
measurements. Discussion is included regarding uncertain-
ties when interpreting plasma measurements of breakdown 
products from glycocalyx shedding.
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We then categorized glycocalyx evaluation in common disease 
processes and organ systems studied by the authors. In doing so, we 
categorized common disease and syndromes as: critical illness; en-
docrine disease; pregnancy; surgery; healthy experimental patients; 
cardiovascular disease; renal disease; infectious disease; miscella-
neous. From there, we identified subcategories in each category 
based on the models from the reviewed publications. These subcat-
egories are given in the Tables that we chose to present our results.

After placing the reviewed publications into one of the major cat-
egories and subcategories, the publications were divided into three 
groups based on whether the publication investigated breakdown 
products, performed a structural assessment, or performed both.

The publications are listed in four tables using the following 
methods. We first assigned reference numbers in an ascending fash-
ion to the models that performed an investigation of breakdown 
products as there were more publications that investigated this. 
These were assigned to Tables 1-3. We continued our reference list 
numerically to include the studies that performed a structural as-
sessment. These were assigned to Table 4.

If a study performed both analysis of breakdown products and 
structural assessment, it was given the reference number that was 
labeled in Tables 1-3 and was also placed in Table 4 with the same 
numerical reference. We indicate an increase (+), decrease (-), or no 
change (0) in the glycocalyx breakdown product(s) depending on the 
individual study findings. Methods showing glycocalyx thickness were 
references as showing decrease (-), increase (+), or no change (0).

3  | RESULTS

After reviewing the 3,454 articles, secondary filters narrowed that 
list to 228 publications that met inclusion criteria of human studies. 

Of these studies, 97% measured sdc-1, HS, and/or HA. The remain-
ing studies assessed Gpc, CS, or synd-4.

3.1 | Commonly studied glycocalyx biomarkers

Sepsis and trauma are the most frequently studied conditions and 
comprise about 40 studies. They usually report 3-4-foldt increased 
levels of glycocalyx degradation products. Exceptions are quite rare 
(Table 1, top). One study on encephalitis showed elevated concen-
trations of sdc-1 in the cerebrospinal fluid.62 By contrast, studies of 
diabetes more rarely report increased concentrations of glycocalyx 
degradation products. Among the few studies of pregnancy, an el-
evation is common when complications arise, such as preeclampsia 
or the HELLP syndrome (Table 1, bottom).

Surgery shows a variable picture. Major surgery that involves 
moments of ischema and marked inflammation, such as cardiac 
surgery and transplantations, are most likely to show elevations of 
glycocalyx degradation products. The same number of studies of 
low-risk surgery show elevations as those that show no change or 
a decrease, which is the same overall picture offered by studies of 
healthy humans not undergoing surgery (Table 2).

Fourteen studies have measured glycocalyx degradation sub-
stances in cardiovascular disease, which is few when considering that 
the endothelium is part of the vascular system (Table 3, top). Heart fail-
ure and myocardial infarction show variable results. Other conditions 
show consistent elevations but are covered by single reports only. Renal 
disease shows a mixed picture, while all seven studies of infectious dis-
ease report elevations, mostly of syndecan-1. A number of other dis-
eases in the internal medical field, such as lupus and leukemia, show 
consistent increases of glycocalyx degradation products. However, 
these conditions are mostly covered by single reports (Table 3, bottom).

F I G U R E  2   Flow-chart showing 
the search strategy for the systematic 
review [Colour figure can be viewed at 
wileyonlinelibrary.com]
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3.2 | Rarely studied glycocalyx biomarkers

Two studies included data on plasma Gpc; one study21 measured 
plasma from septic vs control patients and the second study164 ex-
amined plasma glycocalyx markers (glypican and sdc-1) in relation-
ship to forearm arterio-venous fistula failure. In sepsis, Gpc was 
increased along with C-reactive protein, lactate, pro-calcitonin, sdc-
1, and heparin-binding protein. In the second study, there was no 

relationship between plasma Gpc-1 or sdc-1 vs fistula failure; how-
ever, HA was positively correlated with failure of the arterio-venous 
fistula.

The five studies that reported on plasma concentrations of CS 
found increasing plasma concentrations during sepsis and acute respira-
tory failure,33,36 trauma,54 ischemic stroke,61 and gestational diabetes.67

The results for sdc-4 in plasma are more variable. One study 
found no change in sdc-4 during sepsis.34 In a cohort of ICU patients 

Condition Syndecan-1
Heparan
sulfate Hyaluronan Source Reference

Critical illness

Sepsis + P 13-27

+ + P 28

+ + P 29,30

- - P 31

+ + P 32,33

+ + P 34,36

+ + U 35c
 

Trauma + P 37-52

+ + P 53

+ + + P 54c
 

Traumatic Brain 
Injury

+ P 55-58

Stroke + (P, CSF) 59

0 P 60

0 + 0 P 61a,b,c
 

Meningitis/
Encephalitis

+ P 62

+ CSF 62

Non-septic 
ICU/CCU

+ P 60,63

+ + P 64,65

- P 66a
 

Endocrine disease

Gestational 
diabetes

0 0 0 P 67c
 

Type 1 diabetes x P 68,69

Type 2 diabetes 0 P 70

x P 71

Pregnancy

Preeclampsia - P 72,73

+ P 74,75

+ P 76

- + P 77

0 + + P 78

C section + + P 79

HEELP syndrome + + + P 80

Note: (P) plasma, (U) urine, (+) increase, (-) decrease, (0) no change
aMeasured syndecan-4; bMeasured syndecan-2 and −3; cMeasured chondroitin sulfate

TA B L E  1   Changes in glycocalyx 
biomarker in critical illness, endocrine 
disease, and during pregnancy
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composed of gastrointestinal bleed, trauma, sepsis and cardiac ar-
rest, sdc-4 was not different between patients groups or different 
from controls.24 Sdc-4 decreased in ICU patients receiving lipid 

emulsion infusion,66 while an increase did occur in myocardial infarc-
tion.151 These limited data preclude any meaningful summary from 
being made.

Condition Syndecan-1
Heparan
Sulfate Hyaluronan Source Reference

Surgery

Cardiac surgery + P 81-88

- P 89-91

0 0 P 92

+ + U 93

+ + P 94-97

0 - + P 98

+ + P 99

- - P 100

Brain surgery + 0 P 101

Vascular 
surgery

- P 102

+ + P 103,104

Abdominal 
surgery

+ P 105-107

+ + P 108

0 109,110

0 + 0 P 111

0 0 P 112

0 0 0 P 113,114

- ˗ + U 114

Transplant 
surgery

+ P 115-117

+ + P 118

+ + P 119

+ - 120

Thoracic 
surgery

+ P 121

+ 0 P 122

+ + P 123

Elective low-
risk surgery

- P 124

+ + P 125

+ 0 + P 126

+ 0 U 126

+ 0 P 127

0 + - P 128

0 - - U 128

Healthy humansb 

+ P 129-134

0 135

+ P 136,137

+ + P 138

0 P 139,140

0 0 ˗ P 141

+ + 0 P 142

Note: (P) plasma, (U) urine, (+) increase, (-) decrease, (0) no change
bsubjected to exercise, simulated altitude, hypoxia etc

TA B L E  2   Changes in glycocalyx 
biomarkers in surgical patients and 
healthy humans
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3.3 | Structural measurements

The most widely used method for structural studies of the endothe-
lial glycocalyx layer is to assess its thickness in the sublingual area by 
side Stream Dark Field (SDF) imaging. The assumption is that shed-
ding of the glycocalyx layer both elevates the plasma concentration 

of glycocalyx degradation products and causes a thinning or com-
plete absence of this layer on the SDF image.

When sepsis has been studied by this approach, some studies 
have found a thinning of the glycocalyx layer while others have 
found no change (Table 4, top). There are two studies in stroke, and 
both also show a thinning.

Condition Syndecan-1
Heparan
sulfate Hyaluronan Source Reference

Cardiovascular

Cardiomyopathy + P 143

Heart failure + P 144,145

- + P 146

0 + P 147

Myocardial infarction + P 148-150

0 P 151a ,152

+ + + P

Coronary artery disease + P 154

- P 155

+ P 156,157

Pulmonary embolism + P 158

Cardiac arrest + + P 153,159

Renal

Hemodialysis + P 160,161

- P 162

+ + P 163

0 + P 164

+ + P 165,166

Nephrotic syndrome + 167,168

Acute kidney injury + 169

+ + + 170

- - - U 170

Infectious

+ P 171-175

+ + P 176,177

+ 0 + P 178b
 

+ U 179,180

Miscellaneous

Leukemia + P 181

Lupus + P 182

Kawasaki´s disease + P 183

+ + P 184

Vascular dementia + CSF 185

Transfusion-dependent + P 186-188

+ 0 0 P 189

Cirrhosis + P 190

Note: (P) plasma, (U) urine, (CSF) cerebrospinal fluid
(+) increase, (-) decrease, (0) no change
asyndecan-4 increased; bchondroitin sulfate increased

TA B L E  3   Changes in glycocalyx 
biomarkers in cardiovascular, infectious, 
and renal diseases
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TA B L E  4   Structural measurements of glycocalyx thickness in various clinical settings. References with a lower number than 191 also 
report biomarkers, see Tables 1-3 for details

Condition SDF OPS IDF Other Vascular bed Ref. Biomarker

Critical illness

Sepsis 0 SL 191,192

- SL 193-196

(-) Bright-field SL 197

Trauma - SL 38 sdc-1 +

Stroke - SL 198,199

Non-septic ICU - SL, conjunctiva 63 sdc-1 +

0 66 sdc-1 +

Endocrine disease

Type 2 diabetes + SL and retinal 71 sdc-1 -

+ SL 200

- SL 202,203

Type 1 diabetes - SL 68 sdc-1- HS- HA -

- SL 204,205

Pregnancy

Preeclampsia - SL 78 sdc-1- HS + HA 
+

Surgery

Cardiac - SL 96,206,207 sdc-1 + HS +

- Skin 208

Transplant surgery - Peritubular 118 sdc-1 + HA +

Elective low risk surgery - SL 209,210

Neurosurgery - 211

(-) Bright-field
microscopy

SL 212

Healthy humansa  - SL 213 HS - HA -

(-) Bright-field
microscopy

Labial 214

+ SL 215-217

0 SL 218 HA +

- SL 219

Cardiovascular

Heart failure - SL 220

0 SL 221

Hypertension - SL 222-224

Coronary artery disease - SL 225,226

0 SL 227,228

Pulmonary Artery Hypertension 0 SL 229

Miscellaneous

Hemodialysis (+) sodium
sensitivity

N/A 230

(-) sodium 
sensitivity

N/A 231

0 SL 232 sdc-1

Transfusion dependent - SL 189 sdc-1 + HA 
- HS -

(Continues)
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Trauma and a stroke have been studied with Incidental Dark Field 
(IDF) imaging, and both show a thinning of the glycocalyx layer. Most 
studies of diabetes and all studies in major surgery also show thin-
ning (Table 4, middle). The thickness of the glycocalyx in diabetes 
has also been studied with a third method, Orthogonal Polarization 
Spectral (OPS) imaging.

The results in healthy humans are quite mixed, while seven of 
the eight studies of cardiovascular conditions show thinning of the 
glycocalyx layer (Table 4, bottom).

Assessment of the glycocalyx thickness was made along with 
biomarker measurements in 15 studies of which 9 showed a correla-
tion (60%). These studies can be found in Table 4.

4  | DISCUSSION

Quantification of glycocalyx shedding has become a common and 
expedient method to assess the integrity of the endothelial glyco-
calyx in human disease models. The number of publications increase 
at a high rate and involve many areas of human medicine. Sdc-1, HS, 
and HA are most commonly measured in humans, while Gpc, CS, and 
sdc-4 have been more rarely assessed. The many observational stud-
ies performed show that shedding of endothelial surface proteins is 
a common and ubiquitous occurrence during both acute and chronic 
inflammation. Less frequently, the thickness of the glycocalyx has 
been assessed by specialized imaging methods.

For anesthetists, the importance of the glycocalyx has been per-
ceived to be functional and prognostic. The inflammation induced by 
trauma and major surgery triple the plasma concentrations of several 
molecules present in the glycocalyx, which has been attributed to 
endothelial injury. More pronounced elevations, averaging 15 times 
of baseline, has been reported after surgeries associated with isch-
ema, such as cardiac surgery.105

The common pattern is that several glycocalyx biomarkers be-
come elevated, but in some studies only sdc-1 was increased and 
not HS.101,122,126,178,189 This is surprising since syndecan-1 carries 
predominantly HS on its core protein and both markers would be 
expected to be correlated in plasma concentrations. However, this 
finding might be due to analytical error since syndecan-1 is stable in 
saved samples over time while heparan sulfate is more fragile, in par-
ticular if not consistently stored at −70°C until analyzed. Conversely, 
two studies reported a decrease in sdc-1 but an increase in HS or 
HA.77,146

Elevated plasma concentrations of glycocalyx degradation 
products are clearly related to poor prognosis in severe disease, 
such as trauma44,47 and sepsis.29,105,196,235 However, our review 
still shows a paucity of data that links changes in plasma concen-
trations with quantitative physiological or pathological processes 
in humans. The sensitivity or specificity for examining glycocalyx 
fragments in plasma has not been demonstrated. A few studies 
show reductions in glycocalyx thickness but none of these stud-
ies make direct measurements of the functional consequences of 
such changes. Based on the Revised Starling Principle, glycocalyx 
shedding should increase the capillary permeability of macromole-
cules such as albumin, which reduces the plasma volume. We have 
found no studies in humans supporting that capillary permeability 
is increased when the plasma levels of glycocalyx fragments are 
increased. In fact, there is evidence that demonstrates no change 
in vascular permeability.65,109,236

These uncertainties are unfortunate because clinical recommen-
dations are frequently based on assumed connections of pathophys-
iological events involving the glycocalyx. For example, warnings 
have been given during the past decade that acute hypervolemia 
causes glycocalyx shedding and implicate that colloid fluids quickly 
lose most of their volume enhancing effect.237–240 Recent studies 
show no shedding from hypervolemia during surgery. These include 
cholecystitis, appendectomy,109 hysterectomy,112 and lengthy ab-
dominal surgery.128 Elevation of the sdc-1 and HA levels has been 
reported after correction for plasma dilution,126 but the validity of 
such corrections is unproven due to a lack of pharmacokinetic char-
acteristics for these substances.

Animal studies show that the glycocalyx layer might become de-
graded within 10 minutes, while restoration requires up to one week 
provided the shedding stimulus is removed.241 In the rat lung resto-
ration even occurs within 24 hours, but the recovery is dependent 
on the expression of the fibroblast growth factor receptor which is 
inhibited by sepsis.242 These rates cannot be uncritically extrapo-
lated to humans due to interspecies differences in metabolic rate 
and substrate turnover time.243

The metabolism of these compounds is very complicated, and 
with much of the elimination normally taking place in the liver. The 
kidneys are usually not considered to be of importance, but urinary 
concentrations actually do not deviate much from the plasma con-
centrations. A recent report highlighted the kidney as a source of 
elimination by measuring sdc-1, HS, and HA over 5 hours in healthy 
volunteers and post-surgical patients.170 The renal clearance of 

Condition SDF OPS IDF Other Vascular bed Ref. Biomarker

Infection - Buccal 177 HS + HA +

0 SL 233

Antiphospholipid syndrome - SL 234 sdc-1+

Note: (SL) sublingual, (+) thickening, (-) reduction, (0) unchanged thickness
asubjected to exercise, simulated altitude, hypoxia etc

TA B L E  4   (Continued)
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sdc-1 suggested that the entire plasma pool of free sdc-1 would be 
completely excreted within 15 hours and that a 6-fold variability in 
plasma concentration could be explained by acute changes in renal 
function and not due to increased shedding.

Glycocalyx constituents are assumed to stem from the endothe-
lium despite being widely expressed in the body. Protein expression 
of sdc-1 is abundant in the liver, digestive tract, kidney, urinary blad-
der, and bone marrow, but hardly at all in muscle, adipose tissue, 
tongue, and skin. Protein expression for HS is found in muscle and 
occurs in the cytoplasma of many cell types, as well as in the inter-
stitial matrix.244 It is often assumed that measured plasma constitu-
ents are uniformly derived from the luminal side of the endothelium 
throughout the vascular tree but, in fact, we do not know from where 
in the body they originate. This fact constitutes a bias in the present 
review, as authors being aware of the widespread distribution of gly-
cosaminoglycans in the body may not always use manuscript titles 
and search terms that refer to the glycocalyx.235

We believe that direct measurement of perfused boundary re-
gion (PBR) in the microcirculation is, at present, the best method 
to assess degradation of the glycocalyx. The sublingual vessels 
have been used as an easily accessible vascular bed to determine 
the PBR, which is used a surrogate for glycocalyx thickness. In one 
study, sdc-1 was elevated but there were no changes in the PBR and 
glycocalyx dimensions obtained through structural imaging; Is the 
vascular endothelium the source, and do all vascular beds and en-
dothelium contribute equally to shedding? Such questions are rel-
evant because there are a number of human sepsis studies where 
sublingual PBR has no correlation with a variety of microvascular he-
modynamic parameters.189,195 Specifically, PBR was not correlated 
with sublingual microvascular parameters including perfused vessel 
density, proportion of perfused vessels or microvascular flow index 
in resuscitated sepsis.196 Likewise, PBR did not correlate with micro-
vascular parameters in normodynamic vs hyperdynamic shock and 
there was limited correlation between the sublingual circulation and 
gut microcirculation in sepsis.189,245 Finally, this lack of correlation 
was reported following transfusion and use of activated protein C 
in septic patients.23,144 In summary, the current data show only a 
weak correlation between glycocalyx thickness and with structural 
microcirculatory indices during sepsis.

There is widespread acceptance of the glycocalyx as a permea-
bility barrier. The original publication that gave rise to the glycocalyx’ 
role as a permeability barrier came from Adamson who measured the 
hydraulic conductivity (Lp) of frog mesenteric microvessels before 
and after pronase treatment.246 Pronase is a broad-spectrum pro-
tease that was presumed to significantly degrade the glycocalyx off 
the surface of the mesenteric vessels. Adamson reported that pro-
nase digestion of glycocalyx increased Lp by 2.5-fold and calculations 
estimated that glycocalyx accounted for 60% of hydraulic resistance 
to water flow across the capillary wall. However, increased capillary 
leakage of fluid or albumin resulting from increased plasma levels of 
sdc-1 and HS in humans has not been possible to demonstrate in vol-
unteers and in surgical patients.65,109,110,236 Similarly, Ince et al and 
colleagues found no change in vascular barrier to fluid distribution 

despite increases in plasma sdc-1 and HA in hemorrhaged rats.247 
They also demonstrated that normovolemic hemodilution-induced 
glycocalyx shedding in rats does not alter vascular permeability to 
dextrans, albumin or plasma.248

In chronic diseases, compensatory responses may offset changes 
in shedding or expression. For example, in one study assessment of 
the glycocalyx by SDF imaging showed no significant difference in 
glycocalyx dimensions between patients with and without cardio-
vascular disease.227 However, two studies have reported eleva-
tions in sdc-1 and HA in patients with cardiovascular disease.159,184 
Support for compensatory reaction(s) can be inferred from an in vivo 
study of the glycocalyx in sdc-1 knock-out (KO) mice where Savery 
et al used micro-particle velocimetry to determine the presence of a 
hydrodynamically significant cell surface layer.249 They observed no 
difference in wild-type vs. sdc-1 KO mice and concluded that sdc-1 
was not necessary for the existence of an endothelial glycocalyx. 
Their limited analysis, however, could not rule out altered expres-
sion of other glycocalyx components in the sdc-1 KO. Consider that 
in cultured endothelial cells, knock down the sdc-1 gene resulted in 
increased mRNA for Gpc-1, sdc-4, sdc-4, and for a series of enzymes 
involved in heparan sulfate biosynthesis.250

Langford and colleagues examined the effect of mutated glu-
cosaminoglycan attachment sites on the core protein of syndecan-1 
on invasive cell function.251 To their surprise, cells that expressed 
a modified syndecan with reduced glucosaminoglycan attachment 
sites on the core protein displayed no change in total cell surface 
heparan sulfate. This means the cells had compensatory responses 
to maintain a constant amount of HS on their surface to preserve 
function. If similar responses occur in vivo it is not surprising that 
sdc-1 KO mice have a normal glycocalyx. Evaluation of a single pa-
rameter then seems to be insufficient to make conclusion(s) about 
the composition, 3-dimensional structure, or functional conse-
quences to the glycocalyx.

If we were to assume that all the data in Table 1 was free from 
publication bias and issues of renal clearance, the preponderance of 
data suggests that the glycocalyx is damaged during a wide variety 
of insults, as shedding increased in 96% of all published reports. If 
this percentage is valid, then what is the usefulness of a biomarker 
that increases ubiquitously across many disease states? Although 
uncertain, we suggest that an increase of five times the baseline in 
acute disease or trauma might be accepted as evidence of release 
of glycocalyx degradation products from somewhere in the body. 
Smaller changes might be due to short-term fluctuations in metabo-
lism and urinary excretion.

5  | CONCLUSION

The utility of measuring glycocalyx breakdown products in the 
plasma as biomarkers with a predictive value for determining a spe-
cific disease or the progression of a disease is unproven. Shedding 
of glycocalyx components is a ubiquitous process that occurs during 
both acute and chronic inflammation with no sensitivity or specificity 
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for a specific disease or condition. Uncertainties related to proteo-
glycan expression levels, turnover rate, shedding, renal clearance 
and lack of correction for hemodilution cast doubts on many of the 
reported alterations in glycocalyx breakdown products measured in 
plasma. There is only a moderately good correlation between plasma 
concentration and the structural assessment of glycocalyx thickness 
(60% agreement), which further questions the utility of measuring 
plasma glycocalyx components as a surrogate for structural and 
functional alterations. Finally, compensatory expression of glycoca-
lyx constituents may offset the loss of specific components in order 
to maintain structural integrity.
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APPENDIX 
The following methods have been used to assess the thickness of the glycocalyx layer in vivo.

Bright-field imaging Microcirculation is illuminated with visible light, positioned at a long working distance from the tissues and 
projected at angles between 45 and 90 degrees from the tissue surface. Reflected image is projected through a 
lens for direct viewing or capture by a camera. Provides relatively low resolution.

Orthogonal polarization 
spectral (OPS) imaging

Microcirculation is illuminated with polarized green light. Reflected light from the tissue surface is captured 
and quantified. Emission and reflected light travel through the same tube thus method is sensitive to internal 
reflectance. Signal processing includes filtering of reflected polarized light to improves visualization of 
underlying vessels.252

Sidestream dark field (SDF) 
imaging

Developed as a refinement to OPS. Uses light emitting diodes (LEDs; 530 nm) tuned to absorption by hemoglobin. 
LEDs are arranged concentrically around a center sensing tube and are placed in contact with tissue. Light paths 
for excitation and emission are different thus reducing internal interference and providing clearer images.253

Incidental dark field (IDF) 
imaging

Similar to SDF, but IDF illuminates tissue using a non-homogenous field. Incident illumination is projected at a 
very low angle relative to the tissue surface. Increased signal sensitivity, greater field of view and improved 
optical resolution contributes to enhance image quality.254

Erythrocyte sodium 
sensitivity test (ESST)

Based on the principle that the red blood cell glycocalyx and vascular endothelial glycocalyx are in direct contact. 
Loss of the endothelial glycocalyx increases drag forces on the RBC surface and damages the RBC glycocalyx. 
This damage can be assessed and quantified by salt-sensitive sedimentation rates of the RBC. Studies have 
shown a correlation between EC glycocalyx thickness and RBC sedimentation rates.255,256
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