Протективная ИВЛ во время вмешательств:

что может анестезиолог?

НИИ нейрохирургии им. Н. Н. Бурденко

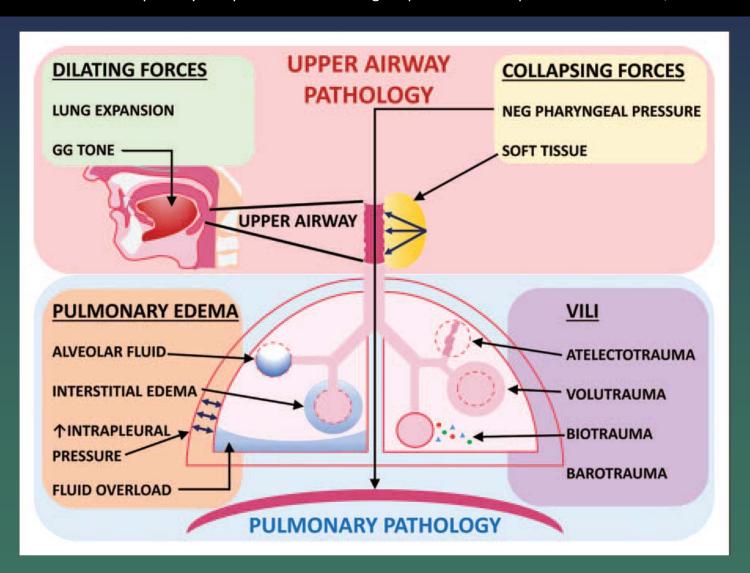
Москва, 27 мая 2017 г.

Кузьков В. В., д. м. н. Кафедра анестезиологии и реаниматологии СГМУ. Архангельск, 2017 г.

Послеоперационные дыхательные осложнения (ПДО)

- При экстренных и плановых обширных хирургических вмешательствах существует риск послеоперационных легочных осложнений.
- Наиболее тяжелая форма ПДО острый респираторный дистресс-синдром.

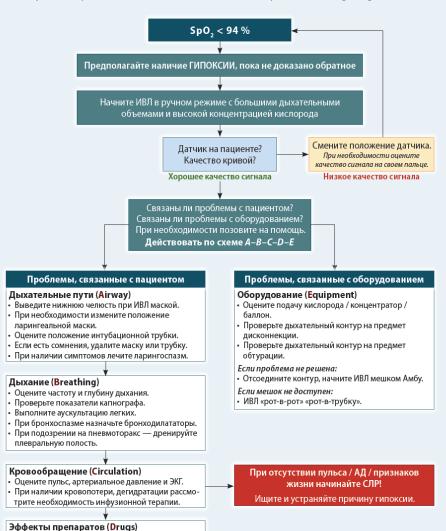
Задачи анестезиолога:


- 1. Уметь оценить риск развития послеоперационных дыхательных осложнений и их триггеры.
- 2. Знать основные мероприятия и подходы «превентивной протективной ИВЛ».
- 3. Осознать свою важную роль в профилактике этих осложнений.

Послеоперационные дыхательные осложнения (ПДО)

Не только легкие, но и верхние дыхательные пути!

Ruscic KJ. Prevention of respiratory complications of the surgical patient... Curr Opin Anesthesiol 2017, 30:399–408

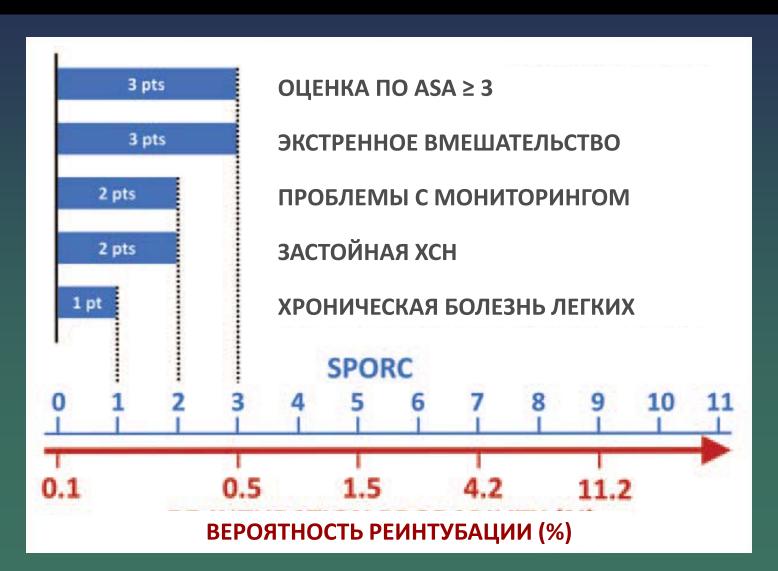


Алгоритм 4

Опиоиды и седативные препараты.
Ингаляционные анестетики.
Миорелаксанты.
Высокий спинальный блок.

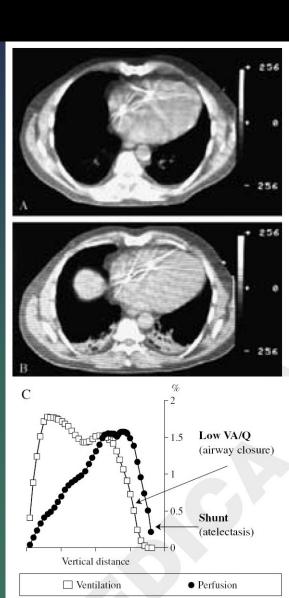
Ведение пациента с гипоксией во время анестезии

Было опубликовано panee в Anaesthesia Tutorial of the Week, 2009; www.update.anaesthesiologists.org


Гипоксия во время анестезии и частные осложнения:

не относятся к ПДО!

- Интубация правого бронха, неправильное положение трубки, перегиб и окклюзия, грыжа или разрыв манжеты.
- Гиповентиляция.
- Снижение ФОЕ и образование ателектазов.
- Операционное положение на спине и на боку.
- Шунтирование и вентиляционно перфузионные нарушения.


Реинтубация и система SPORC?

Ruscic KJ. Prevention of respiratory complications of the surgical patient... Curr Opin Anesthesiol 2017, 30:399–408

Любая анестезия и ИВЛ нарушает газообмен...

- Чем дольше анестезия, тем более выражено снижение **эффективного альвеолярного объема.**
- **Абсорбционное ателектазирование** в зонах с низким вентиляционно-перфузионным отношением!
- Снижение концентрации кислорода предупреждение ателектазирования зон с выраженным преобладанием кровотока над вентиляцией. Даже во время преоксигенации FiO₂ 80%!
- Летучие анестетики?

Механизмы послеоперационных дыхательных осложнений

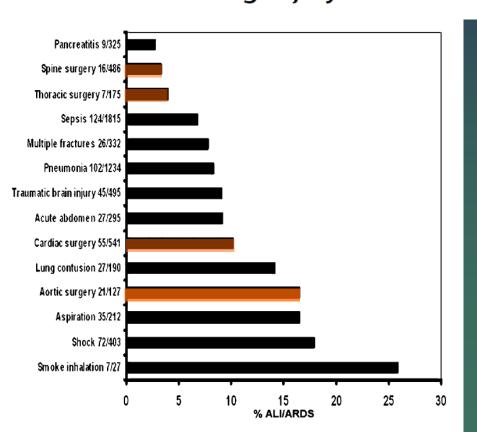
Факторы риска! Биотравма? Физическое повреждение Механотрансдукция, повреждение Волюмотравма, Торакальные, васкулярные, эндо- и эпителия, ЕСМ, абдоминальные вмешательства, общая Баротравма, выброс цитокинов в сист. кровоток анестезия, трансфузии, сепсис, Ателектотравма рестриктивные нарушения, ЧМТ Вмешательство и ИВЛ! Протективная ИВЛ Протективная ИТТ 6 мл/кг предсказанной МТ Рестриктивная инфузионная терапия Pplat < 20 cm H₂O Отказ от СЗП (женская СЗП!) ПДКВ 6-12 см H₂O Лечение сепсиса Маневры рекрутмента

Послеоперационные дыхательные осложнения

Прогрессирование ПОН

Энтеропатия, внутрибрюшная гипертензия, Острое почечное повреждение

Варианты послеоперационных дыхательных осложнений


- Дыхательные нарушения могут быть связаны с воздействием как операции, так и анестезии /ИВЛ.
- Гетерогенная группа состояний:
 - Транзиторная гипоксемия.
 - Отек легких (помните об обструктивных нарушениях ВДП!).
 - Ателектазирование.
 - Обратимая бронхообструкция.
 - Плеврит.
 - Нозокомиальная / вентилятор-ассоциированная пневмония.
 - Наиболее грозный вариант ОРДС!

Recent advances in mechanical ventilation in patients without acute respiratory distress syndrome

Ary Serpa Neto*^{1,2,} Roberto R. Filho¹, Leonardo L. Rocha¹ and Marcus J. Schultz^{2,3}

Early Identification of Patients at Risk of Acute Lung Injury AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 183 2011

Evaluation of Lung Injury Prediction Score in a Multicenter Cohort Study

Послеоперационные легочные осложнения значимо влияют на послеоперационную летальность!

Частота ПДО и послеоперационного ОРДС может быть выше, чем ОРДС, обусловленного сепсисом!

Этот факт нельзя игнорировать!

Факторы риска ОРДС после вмешательства

Gajic O et al. Am J Respir Crit Care Med 2011; 183: 462-70.

Прогнозирование ПОД/ОРДС: шкала L.I.P.S.

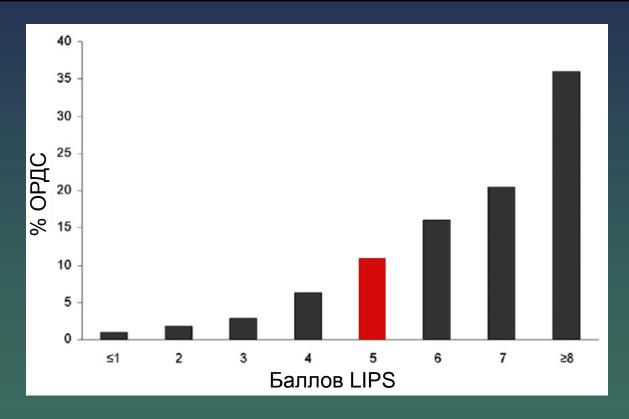
Gajic O et al. Am J Respir Crit Care Med 2011; 183: 462-470.

Критерии	Баллов LIPS
Предрасполагающие состояния	
Шок	2
Аспирация	2
Сепсис	1
Пневмония	1,5
Вмешательства высокого риска*	
Ортопедические (позвоночник)	1
Острый живот	2
Кардиохирургические	2,5
На аорте (сосудистые)	3,5
Травма высокого риска	
ЧМТ	2
Ингаляция дыма	2
Утопление	2
Ушиб легкого	1,5
Множественные переломы ребер	1,5

^{*} При экстренном вмеш-ве добавить 1,5 балла!

	Баллов
Критерии	LIPS
Модификаторы риска	
Алкоголизм	1
Ожирение (ИМТ > 30)	1
Гипоальбуминемия	1
Химиотерапия	1
FiO ₂ > 35% (> 4 л/мин)	2
Тахипноэ (> 30/мин)	1,5
SpO ₂ < 95%	1
Ацидоз (pH < 7,35)	1,5
Сахарный диабет**	-1

Пример:


Пациент с диабетом в анамнезе, сепсисом и шоком, которому выполняется экстренное абдоминальное вмешательство:

$$2 + 2 + 1,5 - 1 = 4,5$$
 балла LIPS

^{**} Только в случае сепсиса!

Частота ОРДС после вмешательства: шкала L.I.P.S.

Gajic O et al. Am J Respir Crit Care Med 2011; 183: 462-470.

При оценке по LIPS > 8 баллов, частота ОРДС повышается до 30 % и более!

Такой прогноз требует решительной профилактики ОРДС!

Лестница профилактики ПДО / ОРДС

Первичная профилактика

Прекращение курения (за 2–4 недели). Прекращение приема алкоголя.(?) Статины перед плановой эзофагэктомией. Коррекция обструктивного сонного апноэ. Оценка тяжести и контроль симптомов ХОБЛ. Коррекция легочной гипертензии.(?)

Кардиореспираторная тренировка.(?)

Во время вмешательства, анестезии и ИВЛ

Вторичная профилактика

Оценка пациентов группы риска. Превентивная протективная ИВЛ:

Низкий дыхательный объем Умеренное ПДКВ.

Снижение FiO₂.

Мероприятия CLIP.

После вмешательства

Третичная профилактика

ПДО

Протективная ИВЛ.

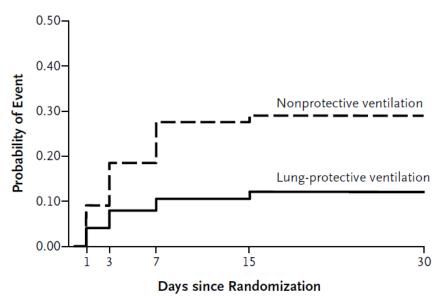
ПДКВ / миорелаксация при тяжелом ОРДС. Мероприятия CLIP.

Ультрапротективная стратегия.

Четвертичная профилактика

Вмешательства, исключающие нежелательные или опасные методы терапии.

Комплексный кардиореспираторный мониторинг.


- **Первичная и вторичная профилактика** ПДО и ОРДС.
- **Третичная и четвертичная профилактика** только ОРДС

ORIGINAL ARTICLE

N ENGLJ MED 369;5 NEJM.ORG AUGUST 1, 2013

A Trial of Intraoperative Low-Tidal-Volume Ventilation in Abdominal Surgery

Emmanuel Futier, M.D., Jean-Michel Constantin, M.D., Ph.D.,
Catherine Paugam-Burtz, M.D., Ph.D., Julien Pascal, M.D.,
Mathilde Eurin, M.D., Arthur Neuschwander, M.D., Emmanuel Marret, M.D.,
Marc Beaussier, M.D., Ph.D., Christophe Gutton, M.D., Jean-Yves Lefrant, M.D., Ph.D.,
Bernard Allaouchiche, M.D., Ph.D., Daniel Verzilli, M.D., Marc Leone, M.D., Ph.D.,
Audrey De Jong, M.D., Jean-Etienne Bazin, M.D., Ph.D., Bruno Pereira, Ph.D.,
and Samir Jaber, M.D., Ph.D., for the IMPROVE Study Group*

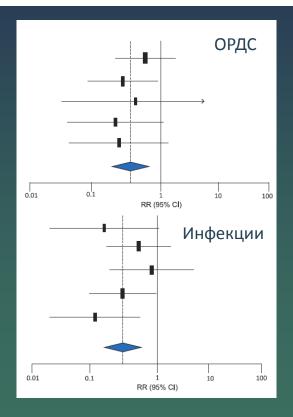
No. at Risk Nonprotective ventilation 200 182163 145 142 142 142 Lung-protective ventilation 200 192184 179 176 175 175

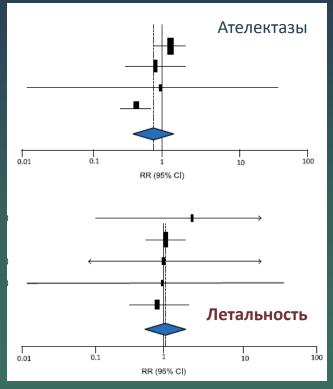
Низкий дыхательный объем во время вмешательства?

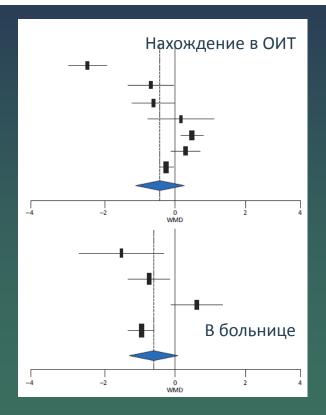
- Многоцентровое РКИ:
- Абдоминальные вмешательства.
- Более 400 взрослых пациентов.
- Пульмональные и экстрапульмональные осложнения (пневмония, потребность в ИВЛ, нИВЛ, сепсис).

Протективный дыхательный объем

Table I. Characteristics of some randomized controlled trials on protective	e ventilation in surgical patients


Study	Tidal volume, mL/kg predicted body weight		Positive end-expiratory pressure, cm H ₂ O		Outcome	
	Protective	Conventional	Protective	Conventional		
Chaney et al. [16] (2000)	6	12	5	5	Decrease in pulmonary damage (evaluated by pressures)	
Zupancich et al. [17] (2005)	8	10–12	10	2–3	Decrease in inflammatory markers in bronchoalveolar lavage and plasma	
Michelet et al. [18] (2006)	5	9	5	0	Decrease in inflammatory markers in plasma and earlier extubation	
Severgnini et al. [20] (2013)	7	9	10	0	Improved respiratory function and reduced modified Clinical Pulmonary Infection Score	
Futier et al. [21] (2013)	6–8	10–12	6–8	0	Decrease in pulmonary and extrapulmonary complications	
Ge et al. [22] (2013)	6	10–12	10	0	Decrease in pulmonary complications and improvement in arterial oxygenation	
Hemmes et al. [42] (2014)	8	8	10–12	0–3	Similar pulmonary complications and more hypotension with higher positive end-expiratory pressure	


Большим количеством исследований показано, что **протективный дыхательный объем** снижает частоту легочных осложнений, улучшает оксигенацию и легочную функцию...


Protective mechanical ventilation in the non-injured lung: review and meta-analysis

Yuda Sutherasan¹, Maria Vargas², Paolo Pelosi³*

Sutherasan et al. Critical Care 2014, 18:211 http://ccforum.com/content/18/2/211

Protective versus Conventional Ventilation for Surgery

A Systematic Review and Individual Patient Data Meta-analysis

Ary Serpa Neto, M.D., M.Sc., Ph.D., Sabrine N. T. Hemmes, M.D., Carmen S. V. Barbas, M.D., Ph.D., Conclusions: These data support the beneficial effects of ventilation with use of low $V_{\rm T}$ in patients undergoing surgery. Further trials are necessary to define the role of intraoperative higher PEEP to prevent PPC during nonopen abdominal surgery.

			1	- 0	*	1	8	1	0 7
Subgroup	Protective Ventilation (%)	Conventional Ventilation (%)	Relative Risk (95% CI)	p value for Interaction	Subgroup	High PEEP (%)	Low PEEP (%)	Relative Risk (95% CI)	p value for Interaction
ASA Score <3 ≥3	8.9 13.3	13.5 20.6	-	0.96	ASA Score <3 ≥3	9.3 14.5	11.3 13.4	*	0.42
Risk Factor No Yes	8.1 15.4	12.2 30.2		0.38	Risk Factor No Yes	8.3 15.0	10.3 29.2	_=	0.24
Type of Ventilation Pressure Controlled Volume Controlled	4.9 9.3	17.9 14.3		0.10	Type of Ventilation Pressure Controlled Volume Controlled	13.2 8.6	9.0 12.0	-	0.22
Type of Surgery Abdominal Cardiac Orthopedic Thoracic	8.0 9.3 10.0 6.1	13.3 12.3 7.1 17.2		0.44	Type of Surgery Abdominal Cardiae Orthopedic Thoracic	7.8 8.6 10.0 5.5	12.0 15.3 0.0 11.3	•	0.73
Body Mass Index < 17 kg/m ² 18 - 25 kg/m ² 26 - 30 kg/m ² 30 - 35 kg/m ² > 35 kg/m ²	9.1 8.9 9.1 7.4 11.1	13.0 13.5 17.4 17.6 7.1	<u> </u>	0.77	Body Mass Index < 17 kg/m ² 18 - 25 kg/m ² 26 - 30 kg/m ² 30 - 35 kg/m ³ > 35 kg/m ³	5.6 8.8 9.3 7.8 14.3	16.7 11.8 12.5 10.0 8.3	=	0.92
Age < 65 years ≥ 65 years	8.0 9.6	12.8 16.7	.	0.75	Age < 65 years ≥ 65 years	7.9 9.7	12.8 11.2	-	0.33
Gender Female Male	7.9 9.4	12.9 16.2	#	0.85	Gender Female Male	7.5 9.7	12.0 12.0	-	0.48
TOTAL	8.8	14.9	_, •		TOTAL	8.9	12.0	_, ┥	13
			0.2 5 20 Protective Conventional Ventilation Ventilation Better Better)			0.05	High PEEP Low PEEP Better Better	0

Protective versus Conventional Ventilation for Surgery

A Systematic Review and Individual Patient Data Meta-analysis

Ary Serpa Neto, M.D., M.Sc., Ph.D., Sabrine N. T. Hemmes, M.D., Carmen S. V. Barbas, M.D., Ph.D.,

Conclusions: These data support the beneficial effects of ventilation with use of low V_T in patients undergoing surgery. Fur-

ther trials are necessary to define the role of intraoperative higher PEEP to prevent PPC during nonopen abdominal surgery.

Table 4. Clinical Outcomes in Patients Undergoing General Anesthesia for Surgery

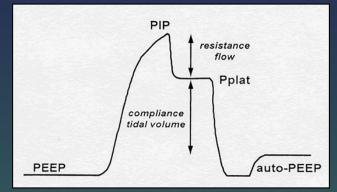

Outcomes	Протекти	ивный ДО?	Adjusted RR (95% CI)*	Value
Postoperative pulmonary complications	97 (8.7)	148 (14.7)	0.64 (0.46–0.88)	< 0.01
Acute respiratory distress syndrome	20 (1.8)	51 (5.1)	0.45 (0.24–0.83)	0.01
Barotrauma	12 (1.1)	29 (2.9)	0.39 (0.17-0.92)	0.03
Suspected pulmonary infection	79 (7.1)	101 (10.0)	0.83 (0.58-1.20)	0.33
In-hospital mortality	22 (2.0)	20 (2.1)	1.17 (0.52-2.62)	0.70
Length of ICU stay, days	1 (0-2)	1 (0–2)	-0.20 (-1.41 to 1.00)†	0.73
Length of hospital stay, days	10 (7–18)	11 (7–18)	-0.61 (-2.80 to 1.57)†	0.58

Table 7. Clinical Outcomes in Patients Undergoing General Anesthesia for Surgery Ventilated with Lower Tidal Volumes

Outcomes	Высокое	пдкв?	Adjusted RR (95% CI)*	<i>P</i> Value	
Postoperative pulmonary complications	85 (8.9)	63 (12)	0.93 (0.64–1.37)	0.72	
Acute respiratory distress syndrome	20 (2.1)	15 (2.8)	0.82 (0.38-1.74)	0.60	
Barotrauma	12 (1.3)	9 (1.8)	0.66 (0.25-1.77)	0.41	
Suspected pulmonary infection	66 (6.9)	55 (10.4)	0.81 (0.54–1.23)	0.33	
In-hospital mortality	18 (1.9)	7 (1.3)	1.34 (0.47–3.78)	0.57	
Length of ICU stay, days	0 (0–1)	1 (1–2)	-0.31 (-1.91 to 1.27)†	0.69	
Length of hospital stay, days	10 (7–18)	11 (8–18)	-0.48 (-3.04 to 2.07)†	0.71	

Давление: пиковое или плато?

- Одинаковый ДО может повреждать легкие сильнее при низком комплайнсе (паренхима и грудная клетка? транспульмональное давление!)
- Давление плато отражает статический комплайнс важный параметр для внимательного анестезиолога.
- Установка плато, снижение скорости потока, частоты дыхания протективный эффект!
- **Pdrive = Pplateau ПДКВ** движущее «эффективное» давление в легких...
- Pplateau < 16 см H_2O и Pdrive < 13 см H_2O .

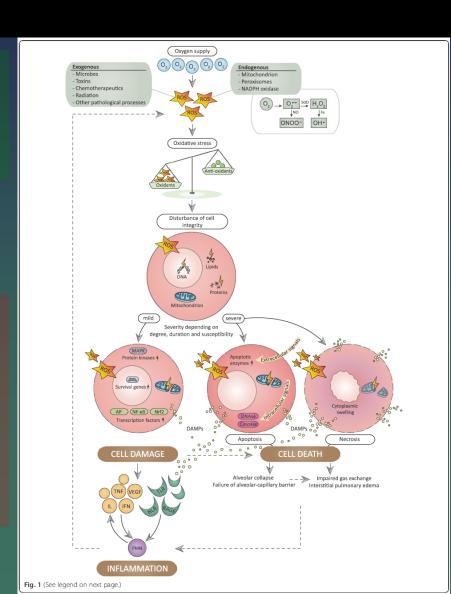
Происходит выравнивание давления (но не объемов!) между различными участками с различной постоянной времени — время тау, $\tau = C \times R = V_T / F_{EXP}(PEAK)$).

Расчет по временной константе (в норме около 0,5 сек, полное опорожнение занимает около 5 т, в норме на выдох достаточно 3–4 т).

Оптимально устанавливать время плато 0,3–0,4 сек. или 10–20% от дыхательного цикла.

Проблема гипероксии в операционной...

Гипероксия и кислородотерапия:


- Уменьшает частоту п/о тошноты и рвоты.
- Снижает риск интестинальной ишемии. (?)
- Снижает частоту раневой инфекции. (?)

Akça O, Sessler DI: Minerva Anestesiol 2002, 68:166-70. Greif R et al. Anesthesiology 1999, 91:1246-52. Goll V et al. Anesth Analg 2001, 92:112-7. Hovaguimian F et al. Anesthesiology 2013, 119:303-16.

Гипероксия в периоперационном периоде:

- Увеличивает риск резорбционных ателектазов!
- Вызывает **оксидативный стресс,** повреждение эндотелия и эпителия, приток воспалительных клеток в легкие.
- При осложнениях (СЛР, ОИМ, ОНМК) влияет на исходы!

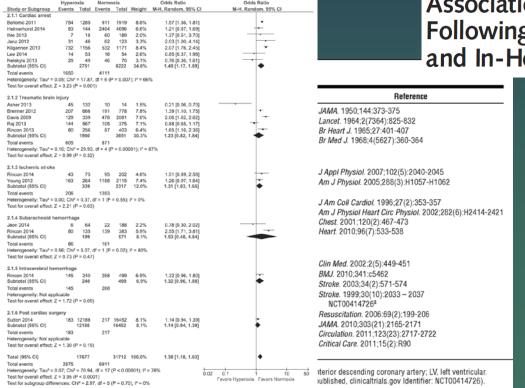
Bhandari V, Elias JA: Free Radic Biol Med 2006, 41:4-18.de Graaff, et al. Intensive Care Med 2011, 37:46-51.

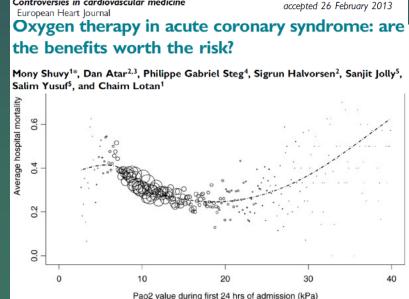
Гипероксия при критических состояниях убивает!

Association Between Arterial Hyperoxia and Outcome in Subsets of Critical Illness: A Systematic Review, Meta-Analysis, and Meta-Regression of Cohort Studies*

Hendrik J. F. Helmerhorst, MD1,2; Marie-José Roos-Blom, MSc3; David J. van Westerloo, MD, PhD1; Evert de Jonge, MD, PhD1 Crit Care Med 2015; 43:

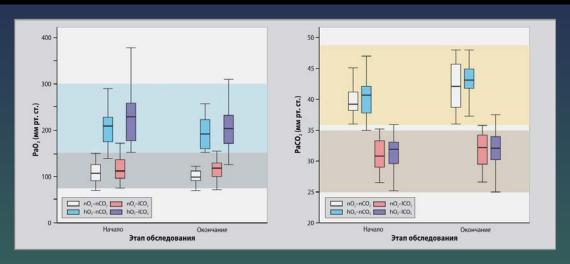
Research

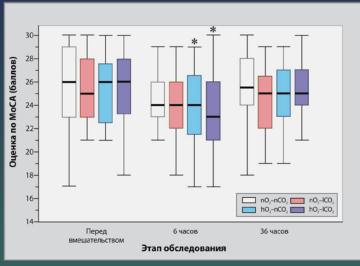

Open Access


Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients Critical Care 2008. 12:R156

Evert de Jonge¹, Linda Peelen^{2,3}, Peter J Keijzers⁴, Hans Joore⁴, Dylan de Lange⁴, Peter HJ van der Voort⁵, Robert J Bosman⁵, Ruud AL de Waal⁶, Ronald Wesselink⁷ and Nicolette F de Keizer²

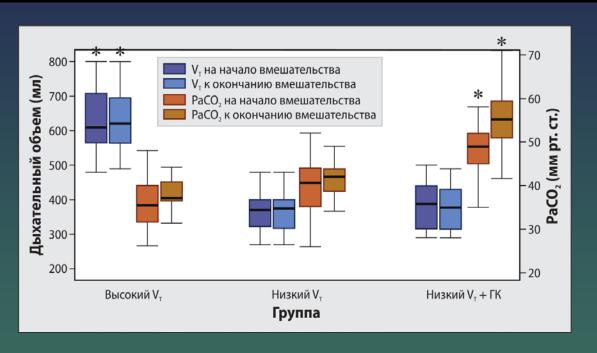
Association Between Arterial Hyperoxia Following Resuscitation From Cardiac Arrest and In-Hospital Mortality JAMA, June 2, 2010—Vol 303, No. 21


Controversies in cardiovascular medicine



Проблема гипероксии и гиперкапнии — даже недолго опасно!

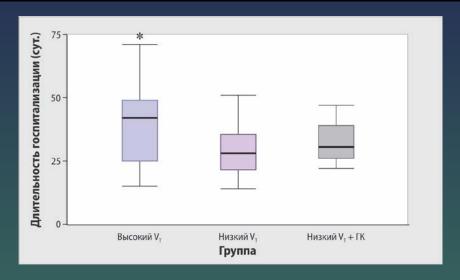
Sokolova M., Rodionova L., Yurkova O., Zvereva A., Kuzkov V., Kirov M. Eur J Anaesth 2015; 32: 43-44.

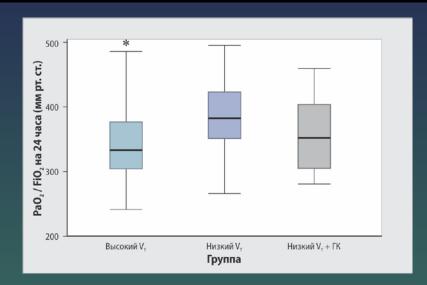


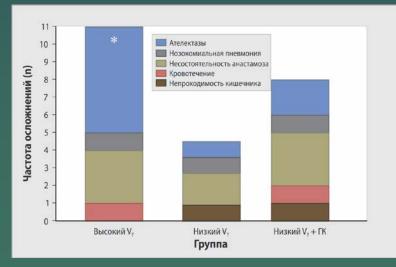
- Эндоскопическая холецистэктомия (n = 109).
- Четыре группы: сочетание нормо-/гипокапнии ($PaCO_2 < 35$ мм рт. ст.) и нормо-/гипероксии ($PaO_2 > 150$ мм рт. ст.).
- Сочетание умеренной гипероксии и гипокапнии ведет к снижению темпа восстановления когнитивных функций даже после кратковременных вмешательств в условиях анестезии...

Интраоперационная ИВЛ

Умеренная гиперкапния при обширных вмешательствах?


Родионова Л.Н. Кузьков В.В., Киров М.Ю.


	Параметры				
Группа	V _T мл/кг PBW	ПДКВ см вод. ст.	РаСО _{2,} мм рт. ст.		
1. Высокий ДО (n = 20)	10	4	35–45		
2. Низкий ДО (n = 20)	6	4	35–45		
3. Низкий ДО + гиперкапния (n = 20)	6	4	45–55		


Умеренная гиперкапния при обширных вмешательствах?

Родионова Л.Н. Кузьков В.В., Киров М.Ю.

- Использование низкого ДО сопровождается улучшением оксигенации...
- Применение протективного ДО ведет к уменьшению времени пребывания в стационаре и снижению частоты осложнений, главным образом ателектазирования.

Умеренная гиперкапния при обширных вмешательствах?

Beyond Low Tidal Volumes
Ventilating the Patient with Acute Respiratory Distress Syndrome

Ray Guo, MD, Eddy Fan. MD. PhD*

Hypercapnia: clinical relevance and mechanisms of action Curr Opin Crit Care 2015, 21:7-12

Claire Masterson^a, Gail Otulakowski^b, and Brian P. Kavanagh^{b,c}

• Сочетание низкого дыхательного объема и умеренной гиперкапнии при обширных панкреатодуоденальных вмешательствах может улучшать течение метаболических процессов, но не влияет на ПДО...

Типы профилактики ПДО / ОРДС

Во время вмешательства без ОРДС

- V_т 6–8 мл/кг ПМТ.
- ПДКВ 0-5 см вод. ст.¹
- Pplateau < 16 см вод. ст.;
- Pdrive < 13 см вод. ст.
- Избегать высоких FiO, и ЧД.
- Нормокапния и нормоксия.

Пациенты ОИТ без ОРДС

- V_т 6−8 мл/кг ПМТ.(?)
- ПДКВ 5 см вод. ст.
- Нормокапния.
- Минимальная FiO₂.²

ОРДС

- V_т ≤ 6 мл/кг ПМТ (4–6 мл/кг).
- ПДКВ выше 5 см вод. ст.³
- Pplateau < 30 см вод. ст.⁴
- Пермиссивная гиперкапния.
- Подбор FiO, по таблице.

- Подбор ДО по предсказанной массе тела (PBW): обычно 7-8 мл/кг.
- При ОРДС, риске ОРДС (LIPS > 5!) ДО 6 мл/кг ПМТ!!!
- Нормокапния и нормоксия?
- Pplateau menee 16 cm H_2O ; Pdrive menee 13 cm H_2O .
- ПДКВ 4-6 см. вод. ст. Рекрутмент при риске ателектазирования.
- Фармакологические методы? Что дальше?

Выводы и новые горизонты

- Послеоперационные дыхательные осложнения оказывают сильное влияние на исход после обширных хирургических вмешательств.
- Существует необходимость **прогнозирования риска ПДО/ОРДС** и его ранней, вторичной профилактики.
- Не вызывает возражений концепция **превентивного снижения дыхательного объема.**
- Важно поддерживать нормоксию и нормокапнию.
- **Независимая роль ПДКВ, Pdrive, альвеолярного рекрутмента и гиперкапнии** в профилактике респираторных осложнений требует дальнейших исследований.

Спасибо за внимание!