Книга Основы ИВЛ, содержание

× закрыть

Введение

1.1 Самая простая классификация аппаратов ИВЛ (или о чём speech)

1.2 Респираторная механика – необходимый минимум

1.3 Повреждение легких при ИВЛ

2.1 Вступление ко второй части книги

2.2 Управление вдохом (Control) и управляемая переменная (Control Variable) Двойное управление Dual Control

2.3 Фазы дыхательного цикла и логика переключения аппарата ИВЛ

2.4 Что такое trigger (триггер), или как аппарат ИВЛ узнаёт, что пора начать вдох?

2.5 Предельные параметры вдоха (Limit variable)

2.6 Программа, выполняющая переключение с вдоха на выдох – Cycle*. Параметры используемые для переключения с вдоха на выдох– Cycle Variables

2.7 PEEP, CPAP и Baseline

2.8 Почувствуйте разницу (отличия программ работающих во время дыхательного цикла)

2.9 Выяснение отношений (последовательность включения и совместимость программ, работающих во время дыхательного цикла)

2.10 Паттерны ИВЛ Ventilatory Patterns

2.11 Под знаком CMV

2.12 Под знаком CSV

2.13 Под знаком IMV

2.14 Использование принципа обратной связи в управлении аппаратом ИВЛ

2.15 Эволюция логических систем (принципов) управления аппаратом ИВЛ

2.16 Стратегия управления вдохом Control Strategy

3.1 Внимание! Warnning!

3.2 Режимы вентиляции и терминологическая путаница

3.3 СРАР

3.4 CMV

3.5 Inverse Ratio Ventilation

3.6 Pressure cycled ventilation

3.7 Pressure Support Ventilation

3.8 Intermittent Mandatory Ventilation + SIMV

3.9 Спонтанное дыхание на двух уровнях давления

3.10 Biphasic positive airway pressure

3.11 BiLevel

3.12 Bivent

3.13 Mandatory minute ventilation

3.14 Dual Control Breath - введение

3.15 Dual control within a breath (VAPS и PLV)

3.16 Volume Support

3.17 PRVC

3.18 AutoFlow

3.19 Automode

3.20 Proportional assist ventilation

3.21 NAVA

3.22 Smartcare PS

3.23 Adaptive support

3.24 Опции

3.25 Заключение

3.26 Словарь

3.27 Список литературы

2.2 Управление вдохом (Control) и управляемая переменная (Control Variable) Двойное управление Dual Control

Абсолютно необходимое вступление о трудностях перевода*

Что значит «control»?

Контроль?! Ничего подобного! В переводе с английского «control» означает никакой не контроль, а управление. И «control panel» – это не приборная доска, а пульт управления, и «to control the plane» – это не контролировать полет самолета из диспетчерской, а управлять самолетом, сидя за штурвалом. Не верите, – посмотрите в словаре. В описании режимов ИВЛ «control variable» – это управляемая переменная или управляемый параметр. Вот так.

«Control» с английского на русский переводится как: «Управление»

*Владимир Львович Кассиль, Маргарита Александровна Выжигина и Геннадий Сегеевич Лескин в своей книге «Искусственная и вспомогательная вентиляция легких» (М., 2004) на стр 115 говорят следующее: «Мы возражаем против появившихся в последние годы терминов "ИВЛ с контролируемым объемом" или "объемно-контролируемая ИВЛ". Русское слово "контролировать" означает "осуществлять контроль или надзор", а английский глагол "to control" в данном контексте — "управлять". Строго говоря, "ИВЛ с контролируемым объемом" означает, что респиратор снабжен волюметром [Ожегов С. И., Шведова Н. Ю. Толковый словарь русского языка. — М., 1997. — С.292»].

Какие параметры описывают вдох аппарата ИВЛ?

Объём (volume), поток (flow), давление (pressure)

Важно понимать, что описывая вдох, мониторируя взаимодействие аппарата и пациента и внося коррективы, мы должны знать и анализировать все эти параметры, а изменять в каждый момент времени можем только один из трёх, но, как только мы меняем один параметр, меняются два других. *

*О времени поговорим отдельно, в данном рассуждении важно понимать, что объём – это произведение потока на Время и, меняя объём, мы меняем один или оба из этих параметров.

Примеры:

  1. Мы увеличили объём вдоха. Во-первых, это возможно сделать или, увеличив поток, или время вдоха, или и то, и другое; во-вторых возрастет давление.
  2. Мы увеличили поток – возрастает объём и давление.
  3. Мы увеличили давление – возрастает объём и поток.
  4. Мы увеличили потоковое время вдоха – возрастает объём и давление.

Как аппарат ИВЛ выполняет свою главную миссию – управляет вдохом?

Control – управление параметрами вдоха.

Control Variable – управляемая переменная или управляемый параметр.

В аппаратах ИВЛ существует программа, управляющая параметрами вдоха, – Control.

Тот параметр, которым управляет Control, называются Control Variable – управляемая переменная или управляемый параметр – это или объём вдоха – Tidal volume, или давление, обеспечивающее вдох, – Inspiratory pressure, или поток вдоха – Inspiratory flow. Способ управления аппаратом ИВЛ называют в зависимости от того, каким из параметров (Control Variable) мы управляем.

  1. Volume controlled ventilation (VCV) – способом управления является изменение дыхательного объёма (Tidal volume).
  2. Flow controlled ventilation (FCV) – способом управления является изменение потока(Inspiratory flow).
  3. Pressure controlled ventilation (PCV) – способом управления является изменение давления (Pressure), времени вдоха (Inspiratory flow time).
  4. Dual controlled ventilation – так называют «интеллектуальные» программы управления, когда, например, для получения заданного объёма аппарат, работающий в режиме PCV, меняет давление и длительность вдоха. Существуют «интеллектуальные» программы, которые пытаются перенастроить аппарат за время одного вдоха, и программы, выполняющие перенастройку за несколько вдохов.

Volume controlled ventilation (VCV)

Управление объёмом

Это самый старинный, традиционный способ искусственной вентиляции легких. Сохранились рисунки и гравюры девятнадцатого века, изображающие мехá, типа кузнечных, специально изготовленных и применявшихся для спасения человеческих жизней. Большинство аппаратов ИВЛ старшего поколения в качестве устройства доставляющего вдох пациенту, имели мехá или цилиндр с поршнем.

Современные аппараты ИВЛ для дозирования и доставки дыхательного объёма (Tidal volume) имеют более сложные устройства с электронным управлением, но без ущерба для понимания основных принципов можно представить себе большой цилиндр с поршнем, наподобие шприца Жане.

Flow controlled ventilation (FCV)

Управление потоком

Каждое утро, умываясь, вы открываете водопроводный кран и регулируете поток (Flow). Принцип управления потоком в аппарате ИВЛ такой же, только кран очень точный, имеет электронное управление и называется «клапан вдоха». Теперь представьте, что вы наполняете стакан: из крана идет поток, но, пока стакан наполнится, пройдёт некоторое время. Как мы уже говорили, поток – это скорость изменения объёма. Для того, чтобы поток (Flow) превратился в дыхательный объём (Tidal volume), мы должны умножить его на время (Inspiratory flow time).

Объединение понятий VCV и FCV

Практика ИВЛ привела потребителей и производителей аппаратов к убеждению о нецелесообразности разделения понятий VCV и FCV вот почему:

Объём и поток жёстко связаны. Объём – это произведение потока на время вдоха.

(VT= х Тi)

Поскольку одним потоком параметры вдоха задать невозможно, при управлении «по потоку» всегда задаётся время вдоха. Получается объём. И, наоборот, никакой аппарат ИВЛ не «впихивает» в пациента дыхательный объём мгновенно. Аппарат ИВЛ – это вам не граната. А если объём входит в легкие постепенно, – значит есть поток и время вдоха. Для удобства пользователя эти два варианта управления объединены в понятие «управление вдохом по объёму» – Volume controlled ventilation (VCV или VC). Сейчас мы говорим только о способе управления вдохом, а не о режимах ИВЛ.

Pressure controlled ventilation (PCV или PC)

Управление давлением

Когда аппарат ИВЛ управляет вдохом «по давлению», он реагирует на показания манометра и открывает клапан вдоха насколько нужно для поддержания заданного давления в контуре аппарата ИВЛ. При таком способе управления вдохом дыхательный объём (Tidal volume) будет зависеть от величины давления и от времени вдоха с одной стороны и от Resistance и Сompliance (сопротивления дыхательных путей и податливости легких и грудной клетки) – с другой. Важно помнить, что при окклюзии или перегибе интубационной трубки, аппарат ИВЛ будет честно создавать заданное давление, а потока не будет, и вдоха не случится.

Сравним Volume controlled ventilation и Pressure controlled ventilation

При Volume controlled ventilation (VCV) аппарат ИВЛ, несмотря ни на какие обструктивные и рестриктивные изменения в респираторной системе, за установленное время вдувает в легкие пациента заданный объём (Tidal volume). Графические отображения вдоха при управлении потоком и при управлении объёмом одинаковые. При VCV есть угроза критического повышения давления в дыхательной системе.

При Pressure controlled ventilation (PCV) аппарат ИВЛ в течение времени вдоха (Inspiratory flow time) поддерживает заданное давление в дыхательных путях и не беспокоится о том, какой дыхательный объем (Tidal volume) был доставлен пациенту. При PCV мы рискуем недодать минутный объём вентиляции в случае повышении резистанс и/или снижения комплайнс.

Сравним графики потока давления и объёма при разных способах управления вдохом PCV и VCV

Давление (Pressure)

Если аппарат ИВЛ управляет давлением, форма графика давления остаётся неизменной. При изменениях в дыхательной системе (изменения резистанс и комплайнс) будут меняться графики объёма и потока.

Объём (Volume)

Если аппарат ИВЛ управляет объёмом, форма графиков объёма и потока остаётся неизменной. При изменениях в дыхательной системе (изменения резистанс и комплайнс) будет меняться график давления.

Управление объёмом вдоха осуществляется или степенью сжатия мехов, или амплитудой смещения поршня, или опосредованно через управление потоком.

Поток (Flow)

Если аппарат ИВЛ управляет потоком, форма графиков объёма и потока остаётся неизменной. При изменениях в дыхательной системе (изменения резистанс и комплайнс) будет меняться график давления.

Управление потоком осуществляется использованием приспособлений регулирующих поток от простых флоуметров до сложных клапанов вдоха с электронным управлением. Управляя потоком, мы опосредованно управляем объёмом вдоха.

Время (Time)

Чтобы классификация была полной, необходимо упомянуть аппараты ИВЛ, которые называются Time-сontroller. Это очень простые транспортные аппараты, у которых регулируется только частота дыханий и длительность вдоха.

Объём минутной вентиляции при управлении по объёму и по давлению.

Две диаграммы помогут Вам зрительно представить различия между Volume controlled ventilation (VCV) и Pressure controlled ventilation (PCV).

При проведении ИВЛ важно обеспечить объём минутной вентиляции.

В любом случае минутный объём дыхания - это произведение дыхательного объёма на частоту.

МОД = ЧД Х ДО

Частота дыханий всегда определяется суммарной длительностью вдоха и выдоха или длительностью дыхательного цикла.

При управлении по объёму (Volume controlled) дыхательный объём задаётся напрямую, или как произведение потока на время.

Все предельно просто: аппарату ИВЛ приказано доставить дыхательный объём, – он выполняет. Проблема возникает, если при этом аппарат ИВЛ будет создавать опасное давление в дыхательных путях. Современные аппараты ИВЛ могут защищать пациента от баротравмы и при этом доставлять предписанный объём. Для этого включают опцию Pressure limit, другое название – Pmax. Как работает эта опция, мы расскажем в разделе «Предельные параметры вдоха (Limit variable)».

При управлении по давлению (Pressure controlled) частота дыханий определяется теми же параметрами, что и при VCV. Дыхательный объём, как и при VCV – это площадь под кривой потока или произведение потока на время вдоха. Главное различие между PCV и VCV состоит в том, что при VCV сразу устанавливаются характеристики потока (форма: прямоугольная или нисходящая, и величина потока), а при PCV аппарат ИВЛ «играет» потоком, удерживая постоянное давление. Таким образом, при изменении сопротивления дыхательных путей (resistance) и/или податливости дыхательной системы (compliance), поток меняется. Соответственно, меняется и дыхательный объём.

Двойное управление Dual Control

«Если нельзя, но очень хочется, то можно…» Прежде, чем рассказывать, как конструкторы аппаратов ИВЛ нашли решение задачи, казавшейся неразрешимой, освежим пройденный материал.

Управление вдохом по объему

Преимущества и недостатки VC

Первые аппараты ИВЛ управлялись по объему. Для инженеров-пневматиков и врачей было проще представить себе поршень в цилиндре, как в шприце или поршневом двигателе, или меха, как у гармони или аккордеона. Спирометрия, как наука, на начальных этапах своего развития наиболее точно измеряла и изучала объемы. Точное измерение потоков, сопротивления и давления при дыхании появилось позже. Способ управления по объёму удобен для врача тем, что установив ДО и МОД, в ряде случаев мы можем надеяться, что адекватно заместили утраченную функцию дыхания.

Недостатки управления по объёму:

  1. При управлении по объёму (VC) возможны только принудительные – (Mandatory) вдохи.
  2. Сложно синхронизировать работу аппарата ИВЛ с дыхательной активностью пациента.
  3. При управлении по объёму (VC) баротравма и волюмотравма встречаются чаще, чем при PC.

Врачу удобно, а каково пациенту?

В результате анализа осложнений ИВЛ, подтвержденного результатами экспериментальных работ, VC изменился. Современные аппараты ИВЛ дают возможность врачу при настройке режимов, использующих управление по объёму (VC), устанавливать напрямую или опосредованно поток, давление и время вдоха, что позволяет сделать вдох более мягким и нежным. Областью применения VC остаются клинические ситуации, когда спонтанная дыхательная активность пациента подавлена. (Применение миорелаксантов в анестезиологии, повреждение дыхательного центра в стволе мозга, паралич дыхательной мускулатуры и т. д.).

Управление вдохом по давлению

Преимущества и недостатки PС

Аппараты ИВЛ, управляемые по давлению, впервые появились в педиатрии. Это произошло потому, что приспособлений, точно измеряющих количество воздуха, доставляемого маленькому пациенту, не было. Необходимо учитывать сжатие воздуха в контуре аппарата ИВЛ, комплайнс шлангов, величину мертвого пространства коннектора и интубационной трубки и т.д. Поэтому, для ИВЛ у детей использовали управление по давлению и просто смотрели, как в момент вдоха расширяется грудная клетка, и анализировали газовый состав крови и аускультативную картину.

Фиксировались показания манометра и волюметра, но все понимали, что эти данные описывают события по эту сторону от интубационной трубки.

Основным, а иногда и единственным прибором, подсказывающим врачу, в какую сторону крутить ручки управления аппарата ИВЛ, был манометр. Накопление клинического опыта доказало, что PC безопаснее VC, поскольку способ управления аппаратом ИВЛ заставляет врача думать, в первую очередь, о том, под каким давлением воздух будет входить в легкие и за какой промежуток времени (в отличие от PC при VC врач вначале думает о ДО и МОД, а потом смотрит, как это получилось).

Достоинства управления по давлению (PC):

  1. Большая защищенность пациента от баротравмы и волюмотравмы.
  2. При управлении по давлению (PC) возможны спонтанные (Spontaneous) вдохи.
  3. При управлении по давлению (PC) возможна синхронизация работы аппарата ИВЛ с любой спонтанной дыхательной активностью пациента.

Недостатки управления по давлению (PC): 1. Изменение респираторной механики пациента меняет качество ИВЛ и требует изменения параметров вентиляции. 2. Поскольку при PC главная задача аппарата ИВЛ – создавать давление в дыхательном контуре, контроль (в русском смысле этого слова) величины ДО и МОД осуществляет врач, проводящий ИВЛ.

Двойное управление в принципе невозможно. Представите себе автомобиль, у которого два руля и два шофера, – ерунда. В кабине больших самолетов у первого и второго пилотов есть свой штурвал и пульт управления, но управляют они по очереди.

Тем не менее, опытный врач-реаниматолог, имея в распоряжении современный аппарат ИВЛ с возможностями регулирования длительности вдоха, потока и давления осуществляя ИВЛ по давлению (PC), обеспечивает необходимый пациенту дыхательный объём, а при ИВЛ по объёму (VC) не допускает опасного подъёма давления в дыхательных путях.

Как мы можем менять величину дыхательного объема, если используется управление по давлению (PC)? Очень просто, дыхательный объем равен произведению потока на время, поэтому, увеличивая длительность вдоха, мы увеличиваем дыхательный объем до тех пор, пока есть поток*. Другой способ увеличить дыхательный объем – изменить поток. Поток, как мы уже говорили, по закону Гагена-Пуазеля, определяется градиентом давлений. Для респираторной системы – это транспульмональный градиент. Таким образом, повышая давление на вдохе, мы увеличиваем поток и, в результате, за тоже время вдоха вводим больший объем.

Если используется управление по объёму (VC), уменьшив поток, но увеличив время вдоха, можно доставить пациенту тот же дыхательный объём, создавая меньшее давление в дыхательных путях. Поскольку поток создает давление, уменьшение потока приведет к снижению давления на вдохе.

Задача конструкторов состояла в том, чтобы научить умный аппарат ИВЛ действовать так же, как опытный доктор.

Аппарат ИВЛ, имеющий бортовой компьютер и соответствующие программы управления, в соответствии с установленным врачом целевым дыхательным объемом (ЦДО – target tidal volume) в разрешенных пределах увеличивает давление и, соответственно, поток на вдохе.

Существуют программы, которые для достижения ЦДО увеличивают время вдоха (обычно – не более, чем до трех секунд).

Большинство режимов, использующих способ Dual Control , начинают вдох как РС, а интеллектуальная программа аппарата ИВЛ стремится достичь целевой дыхательный объем, повышая давление на вдохе, поток или длительность вдоха в разрешенных границах. Если это невозможно, аппарат включает тревогу.

*Поток прекратится в двух случаях. Во-первых, если градиент давления, создающий поток, равен нулю, т.е. упругое сопротивление легких и грудной клетки равно усилию аппарата, производящего вдох (давление есть, а потока нет). Это значит, что дыхательный объем больше не увеличивается. Во-вторых, если аппарат сам прекратил создавать поток, например, переключился на выдох.